THEORETICAL STUDIES OF THE INDUCTIVE EFFECT - 3. A THEORETICAL SCALE OF FIELD PARAMETERS1

S. Marriott and **R.D. Topsom***

Department of Organic Chemistry, La Trobe University, Bundoora, Australia, 3083.

swruncry: *It is shown that theoretica cahulations on simple systems at the ah initio* 4-31G level are capable of reproducing *inductive* **field** *parameters and can be used to extend the* scale to substituents whose values are less well established.

The transmission of polar effects in σ -bonded systems continues to attract interest.²⁻⁶. It **is now well established 2,5,6 that the predominant mechanism of transmission involves a direct** through space electrostatic interaction, generally referred to as a field effect (F). Positive **evidence for transmission via the alternative a-inductive effect, a progressive but diminishing relay of polar effects along a chain of carbon atoms, is hard to find except possibly in physical properties at very short distances. 5 Such sigma-inductive effects arise from substituent electronegativities** α **.** In a recent communication⁴ we have shown that the charge on the hydrogen atom in compounds HX provides a measure of substituent **group** electronegativity. **Here we** show that field effects, as measured by σ_F values, can equally be obtained from theoretical results.

In earlier work we have shown7 that **polar substituent constants are approximately proportional** to calculated values of ΔE° for the proton transfer reaction (1),

$$
XCH_2NH_3^+ + CH_3NH_2 \rightleftharpoons X CH_2NH_2 + XCH_2NH_2 \tag{1}
$$

and also for the corresponding equilibrium with the B-substituted ethylamines. We later showed' that isolated molecule calculations using the methylammonium ion could also be used as a measure of field effects. For example, the field effects of <u>para</u>-substituted anilines can be simulated $\overline{}$ **using the isodesmic process below (2),**

$$
CH_3NH_3^+
$$
/CH_3X + CH_3NH_2/CH_4 \rightleftharpoons CH_3NH_3^+/CH_4 + CH_3NH_2/CH_3X (2)

where the distances between the isolated molecules were equivalent to those in the corresponding anilines. The dual substituent parameter 10 analysis was given by (3).

$$
\Delta E^{\circ} = 10.1 \sigma_{I} + 2.00 \sigma_{R}^{\circ}
$$
 (3)

It was suggested that the resonance term was not significant but its presence together with the only moderate statistical fit $($ f⁹ = 0.21) precluded the method being used as a theoretical basis **for a scale of inductive parameters.**

We are examining various series of isolated molecules and have found some that are particularly suitable as a theoretical basis for scales of field effects. We have made these calculations at the ab inito 4-31G level and have looked at both electron densities and energies. We briefly discuss one example of each. The series have been selected to avoid secondary

effects^{6,8} arising from the polarisation of bonds in between the substituent and the measurement site.

A. Polarisation of hydrogen by HX.

We have made a series of calculations on the very simple system (4) below with various values of r from $4A^{\circ}$ to $7A^{\circ}$. We have used the charge at hydrogen atom α as a measure of the

$$
B \quad \alpha
$$

\n
$$
H \longrightarrow X
$$

\n
$$
T \longrightarrow T
$$

\n(4)

polarisation of the hydrogen molecule caused by HX. Since this should be proportional to the dipole in the HX, it provides a measure of the substituent field effect. Values are given in Table 1. A dsp analysis leads to (5) with an excellent fit (f = 0.08).

$$
10^3 \text{ q}_{\text{H}} = -26.0\sigma_{\text{T}} + 0.06\sigma_{\text{R}}^{\circ} \tag{5}
$$

B. ΔE° for the proton exchange of NH₄⁺/HX.

Here the isodesmic process is (6).

$$
NH_4^+ / HX + NH_3 / HH \rightleftharpoons NH_4^+ / HH + NH_3 / HX \tag{6}
$$

The results used the geometry below (7)

$$
4.5 \, \, \text{A}^{\circ} \left(\begin{array}{cccc} \text{H} & \text{H} & \text{H} & \text{H} \\ \text{H} & & & \\ \text{H} & & & \\ & \text{H} & & \\ & & \text{H} & & \\ & & & \text{H} & \\ & & & \text{H} & & \\ & &
$$

The ΔE° values are shown in Table 1. A dsp analysis gives equation (8) with both a very low resonance component and an excellent fit $(f = 0.09)$.

$$
\Delta E^{\circ} = -12.63 \sigma_{\text{T}} + 0.29 \sigma_{\text{R}}^{\circ} \tag{8}
$$

Results from the two methods are proportional and can be used to obtain values at $\sigma_{\mathbf{p}}$ for other substituents. Thus values obtained using method B and equation (9) are shown in Table 2.

$$
\Delta E^{\bullet} = -12.6\sigma_{\bullet} \tag{9}
$$

In the figure, we show a plot of these $\sigma_{\mathbf{F}}$ values against the $\sigma_{\mathbf{F}}$ values given in reference 10. The good correlation shows the utility of the method.

Acknowledgement. We are grateful to the Australian Research Grants Committee for financial assistance.

References

1. For part 1, see reference 8 and for part 2, see reference 6 below.

- 2. R.D. Topsom, Progr.Phys.Org.Chem., 12, 1 (1976) and references therein.
- 3. See for example, A.J. Hoefnagel, M.A. Hoefnagel and B.M. Wepster, J.Org.Chem., 43, 4720 (1978); C.A. Grob, B. Schaub, and M.G. Schlageger, Helv.Chim.Acta, 63, 57 (1980); 0. Exner and P. Fiedler, Coll.Czech.Chem.Commun., 45, 1251 (1980).
- 4. W.F. Reynolds, R.W. Taft, S. Marriott, and R.D. Topsom, to be submitted for publication.
- 5. W.F. Reynolds, J.Chem.Soc.Perkin II, 985 (1980).
- 6. R.D. Topsom, J.Amer.Chem.Soc., 103, 39 (1981) and references therein.
- 7. M. Taagepera, W.J. Hehre, R.D. Topsom, and R.W. Taft, J.Amer.Chem.Soc., 98, 7438 (1976).
- 8. R.D. Topsom, Tetrahedron Letters, 403 (1980).
- 9. S. Ehrenson, R.T.C. Brownlee, and R.W. Taft, Progr.Phys.Org.Chem., 10, 1 (1973).
- 10. J. Bromilow, R.T.C. Brownlee, V-0. Lopez, and R.W. Taft, J.Org.Chem., 44, 476 (1979).
- Table 1. Values for Polarisation of H₂ by HX (A in text) and of the Effect of HX on the Isodesmic Proton Transfer from the Ammonium Ion (B in text). Calculations using ab initio 4-31G basis.

 a $r = 4A^{\circ}$ in (4) - see text.

1488

	Table 2. Field Parameters, $\sigma_{\rm p}$, derived from the Effect of Isodesmic Proton Exchange on (NH _A ⁺ /HX).				
Subst.	$\sigma_{\rm F}$	Subst.	$\sigma_{_{\rm I\!P}}$	Subst.	$\sigma_{\rm F}$
Me	-0.02	M_{2}	0.16	CF ₂	0.45
H	0.00	CO ₂ Me	0.17	COF	0.48
CHCH ₂	0.01	COMe	0.21	F	0.49
CH ₂ OH	0.06	OMe	0.26	CN	0.51
CCH	0.12	CHO	0.27	NO	0.58
NMe,	0.13	OН	0.29	$_{\text{NO}_{2}}$	0.71
CH_2F	0.16				

